118 research outputs found

    Effects of Dynamic Model Errors in Task-Priority Operational Space Control

    Get PDF
    Control algorithms of many Degrees Of Freedom (DOFs) systems based on Inverse Kinematics or Inverse Dynamics approaches are two well-known topics of research in robotics. The large number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved either at kinematic or dynamic level. This paper investigates the effects of modeling errors in operational space control algorithms with respect to uncertainties affecting knowledge of the dynamic parameters. The effects on the null-space projections and the sources of steady-state errors are investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts

    A General Framework for Hierarchical Redundancy Resolution Under Arbitrary Constraints

    Full text link
    The increasing interest in autonomous robots with a high number of degrees of freedom for industrial applications and service robotics demands control algorithms to handle multiple tasks as well as hard constraints efficiently. This paper presents a general framework in which both kinematic (velocity- or acceleration-based) and dynamic (torque-based) control of redundant robots are handled in a unified fashion. The framework allows for the specification of redundancy resolution problems featuring a hierarchy of arbitrary (equality and inequality) constraints, arbitrary weighting of the control effort in the cost function and an additional input used to optimize possibly remaining redundancy. To solve such problems, a generalization of the Saturation in the Null Space (SNS) algorithm is introduced, which extends the original method according to the features required by our general control framework. Variants of the developed algorithm are presented, which ensure both efficient computation and optimality of the solution. Experiments on a KUKA LBRiiwa robotic arm, as well as simulations with a highly redundant mobile manipulator are reported.Comment: 19 pages, 19 figures, submitted to the IEE

    Manipulation Planning and Control for Shelf Replenishment

    Get PDF
    Manipulation planning and control are relevant building blocks of a robotic system and their tight integration is a key factor to improve robot autonomy and allows robots to perform manipulation tasks of increasing complexity, such as those needed in the in-store logistics domain. Supermarkets contain a large variety of objects to be placed on the shelf layers with specific constraints, doing this with a robot is a challenge and requires a high dexterity. However, an integration of reactive grasping control and motion planning can allow robots to perform such tasks even with grippers with limited dexterity. The main contribution of the paper is a novel method for planning manipulation tasks to be executed using a reactive control layer that provides more control modalities, i.e., slipping avoidance and controlled sliding. Experiments with a new force/tactile sensor equipping the gripper of a mobile manipulator show that the approach allows the robot to successfully perform manipulation tasks unfeasible with a standard fixed grasp.Comment: 8 pages, 12 figures, accepted at RA

    A Distributed Tactile Sensor for Intuitive Human-Robot Interfacing

    Get PDF
    Safety of human-robot physical interaction is enabled not only by suitable robot control strategies but also by suitable sensing technologies. For example, if distributed tactile sensors were available on the robot, they could be used not only to detect unintentional collisions, but also as human-machine interface by enabling a new mode of social interaction with the machine. Starting from their previous works, the authors developed a conformable distributed tactile sensor that can be easily conformed to the different parts of the robot body. Its ability to estimate contact force components and to provide a tactile map with an accurate spatial resolution enables the robot to handle both unintentional collisions in safe human-robot collaboration tasks and intentional touches where the sensor is used as human-machine interface. In this paper, the authors present the characterization of the proposed tactile sensor and they show how it can be also exploited to recognize haptic tactile gestures, by tailoring recognition algorithms, well known in the image processing field, to the case of tactile images. In particular, a set of haptic gestures has been defined to test three recognition algorithms on a group of 20 users. The paper demonstrates how the same sensor originally designed to manage unintentional collisions can be successfully used also as human-machine interface

    Alcohol Septal Ablation in Patients with Hypertrophic Obstructive Cardiomyopathy: A Contemporary Perspective

    Get PDF
    Alcohol septal ablation is a minimally invasive procedure for the treatment of left ventricular outflow tract (LVOT) obstruction in patients with hypertrophic obstructive cardiomyopathy (HOCM) who remain symptomatic despite optimal medical therapy. The procedure causes a controlled myocardial infarction of the basal portion of the interventricular septum by the injection of absolute alcohol with the aim of reducing LVOT obstruction and improving the patient's hemodynamics and symptoms. Numerous observations have demonstrated the efficacy and safety of the procedure, making it a valid alternative to surgical myectomy. In particular, the success of alcohol septal ablation depends on appropriate patient selection and the experience of the institution where the procedure is performed. In this review, we summarize the current evidence on alcohol septal ablation and highlight the importance of a multidisciplinary approach involving a team of clinical and interventional cardiologists and cardiac surgeons with high expertise in the management of HOCM patients-the Cardiomyopathy Team

    State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation

    Get PDF
    Aim The diagnosis, severity and extent of a sterile inflammation or a septic infection could be challenging since there is not one single test able to achieve an accurate diagnosis. The clinical use of 18F-fluorodeoxyglucose ([F-18]FDG) positron emission tomography/computed tomography (PET/CT) imaging in the assessment of inflammation and infection is increasing worldwide. The purpose of this paper is to achieve an Italian consensus document on [F-18]FDG PET/CT or PET/MRI in inflammatory and infectious diseases, such as osteomyelitis (OM), prosthetic joint infections (PJI), infective endocarditis (IE), prosthetic valve endocarditis (PVE), cardiac implantable electronic device infections (CIEDI), systemic and cardiac sarcoidosis (SS/CS), diabetic foot (DF), fungal infections (FI), tuberculosis (TBC), fever and inflammation of unknown origin (FUO/IUO), pediatric infections (PI), inflammatory bowel diseases (IBD), spine infections (SI), vascular graft infections (VGI), large vessel vasculitis (LVV), retroperitoneal fibrosis (RF) and COVID-19 infections. Methods In September 2020, the inflammatory and infectious diseases focus group (IIFG) of the Italian Association of Nuclear Medicine (AIMN) proposed to realize a procedural paper about the clinical applications of [F-18]FDG PET/CT or PET/MRI in inflammatory and infectious diseases. The project was carried out thanks to the collaboration of 13 Italian nuclear medicine centers, with a consolidate experience in this field. With the endorsement of AIMN, IIFG contacted each center, and the pediatric diseases focus group (PDFC). IIFG provided for each team involved, a draft with essential information regarding the execution of [F-18]FDG PET/CT or PET/MRI scan (i.e., indications, patient preparation, standard or specific acquisition modalities, interpretation criteria, reporting methods, pitfalls and artifacts), by limiting the literature research to the last 20 years. Moreover, some clinical cases were required from each center, to underline the teaching points. Time for the collection of each report was from October to December 2020. Results Overall, we summarized 291 scientific papers and guidelines published between 1998 and 2021. Papers were divided in several sub-topics and summarized in the following paragraphs: clinical indications, image interpretation criteria, future perspectivess and new trends (for each single disease), while patient preparation, image acquisition, possible pitfalls and reporting modalities were described afterwards. Moreover, a specific section was dedicated to pediatric and PET/MRI indications. A collection of images was described for each indication. Conclusions Currently, [F-18]FDG PET/CT in oncology is globally accepted and standardized in main diagnostic algorithms for neoplasms. In recent years, the ever-closer collaboration among different European associations has tried to overcome the absence of a standardization also in the field of inflammation and infections. The collaboration of several nuclear medicine centers with a long experience in this field, as well as among different AIMN focus groups represents a further attempt in this direction. We hope that this document will be the basis for a "common nuclear physicians' language" throughout all the country

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF
    • …
    corecore